Gromov-Hausdorff limits of Aspherical Manifolds




时   间:2025年6月2日 14:30-16:00

地   点:数学楼401

主讲人:戎小春 教授(美国罗格斯大学)

主持人:郑   宇 教授

讲座内容简介:

Let X be a compact Gromov-Hausdorff limit space of a collapsing sequence of compact asphercial n-manifolds, Mi, of Ricci curvature $Ric_(Mi) ≥ -(n- 1)$ and any point in the Riemannian universal covering space of Mi is a Reifenberg point, or sectional curvature $sec_(Mi) ≥ -1$, respectively. We conjecture that if the fundamental group of Mi $ satisfies a certain condition, then X is diffeomorphic, or homeomorphic to an aspherical manifold, respectively. In this talk, we will present a result that if Mi a diffeomorphic or homeomorphic to a nilmanifold, respectively, then X is diffeomorphic or homeomorphic to a nilmanifold, respectively.

主讲人简介:

戎小春是国际知名的度量黎曼几何专家,教育部特聘教授,曾获美国斯隆研究奖(SloanResearch Fellowships),美国数学会会士,应邀在2002年国际数学家大会做45分钟报告,现为美国罗格斯(Rutgers)大学数学系杰出(Distinguished) 教授。戎小春教授主要从事微分几何和度量黎曼几何的研究,在黎曼几何中的收敛和塌陷理论及其应用、正曲率流形几何和拓扑,Alexandrov几何等方面作出了若干基础性的贡献,已在Adv. Math.,Amer. J. Math., Ann. of Math, Duke Math.,GAFA.,Invent. Math.,J. Diff. Geom等国际知名期刊上发表论文50余篇。